If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-120-8t+4.9t^2=0
a = 4.9; b = -8; c = -120;
Δ = b2-4ac
Δ = -82-4·4.9·(-120)
Δ = 2416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2416}=\sqrt{16*151}=\sqrt{16}*\sqrt{151}=4\sqrt{151}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{151}}{2*4.9}=\frac{8-4\sqrt{151}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{151}}{2*4.9}=\frac{8+4\sqrt{151}}{9.8} $
| −2(n−2)=−3−2n | | -1÷4=2÷3a | | -40=8(7+d) | | 27-4.5x= | | -7x+8=-3x-6 | | 8x+x=12+6x | | -6(t-80)=-78 | | 12x+20-15x=5x-100 | | 15=¾(9x+8) | | 6x-46=-10 | | -2x+8=5x-4 | | 3(2−n)=3−n+1 | | 2(v-17)=4 | | -7(2x+2)+4x=-84 | | 18=3f-36 | | 84=4(r-27) | | |x+12|=-9+20 | | 2(10x+5)=2-15x+11 | | -5+10v=2(1+4v)-4 | | -2x+8=5x-3-4 | | p/6-3.5=-1.5 | | -c/5+2=4 | | 7=(u+4) | | 8+19=-3(7x-9) | | v-23/10=5 | | x-27=42x-21-39x | | 9g+3=48 | | 1/2r+3=2 | | 2(m-3)=9 | | 2(-x+4)=5x-4 | | -8.3+3j=-2.3 | | (4x+30)+(x+50)=180 |